How to construct finite-dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials

Abstract
A systematic method of constructing finite‐dimensional integrable systems starting from a bi‐Hamiltonian hierarchy of soliton equations is introduced. The existence of two Hamiltonian structures of the hierarchy leads to a bi‐Hamiltonian formulation of the resulting finite‐dimensional systems. The case of coupled KdV hierarchies is studied in detail. A surprising connection with separable Jacobi potentials is uncovered and described.