Congenital progressive hydronephrosis ( cph ) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation
Open Access
- 2 May 2006
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (18), 6952-6957
- https://doi.org/10.1073/pnas.0602087103
Abstract
Congenital progressive hydronephrosis (cph) is a spontaneous recessive mutation that causes severe hydronephrosis and obstructive nephropathy in affected mice. The mutation has been mapped to the distal end of mouse chromosome 15, but the mutated gene has not been found. Here, we describe the identification of a single base pair change in aquaporin-2 (Aqp2) in cph mutants through genetic linkage mapping. The C-T change led to the substitution of a Ser (S256) by a Leu in the cytoplasmic tail of the Aqp2 protein, preventing its phosphorylation at S256 and the subsequent accumulation of Aqp2 on the apical membrane of the collecting duct principal cells. The interference with normal trafficking of Aqp2 by this mutation resulted in a severe urine concentration defect. cph homozygotes demonstrated polydipsia and produced a copious amount of hypotonic urine. The urine concentration defect could not be corrected by [deamino-Cys1,d-Arg8]-vasopressin (DDAVP, a vasopressin analog), characteristic of nephrogenic diabetes insipidus. The nephrogenic diabetes insipidus symptoms and the absence of developmental defects in the pyeloureteral peristaltic machinery in the mutants before the onset of hydronephrosis suggest that the congenital obstructive nephropathy is most likely a result of the polyuria. This study has revealed the genetic basis for the classical cph mutation and has provided direct genetic evidence that S256 in Aqp2 is indispensable for the apical accumulation, but not the general glycosylation or membrane association, of Aqp2.Keywords
This publication has 27 references indexed in Scilit:
- Lack of Arginine Vasopressin–Induced Phosphorylation of Aquaporin-2 Mutant AQP2-R254L Explains Dominant Nephrogenic Diabetes InsipidusJournal of the American Society of Nephrology, 2005
- Diabetes Insipidus in Mice with a Mutation in Aquaporin-2PLoS Genetics, 2005
- Organization of vesicular trafficking in epitheliaNature Reviews Molecular Cell Biology, 2005
- From structure to disease: the evolving tale of aquaporin biologyNature Reviews Molecular Cell Biology, 2004
- Familial Vesicoureteral RefluxJournal of Urology, 2003
- The Role of Putative Phosphorylation Sites in the Targeting and Shuttling of the Aquaporin-2 Water ChannelJournal of Biological Chemistry, 2002
- Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor geneJournal of Clinical Investigation, 2000
- Primary, Nonsyndromic Vesicoureteric Reflux and Its Nephropathy Is Genetically Heterogeneous, with a Locus on Chromosome 1American Journal of Human Genetics, 2000
- Molecular and cellular pathophysiology of obstructive nephropathyPediatric Nephrology, 1999
- PITRESSIN-RESISTANT DIABETES INSIPIDUS AND DIABETES MELLITUS WITH BILATERAL HYDRONEPHROSISThe American Journal of the Medical Sciences, 1964