Abstract
Regeneration failure ofPicea abies in a subalpine bilberry-spruce forest was studied in relation to phenolic compounds, their occurrence and toxicity. Germination bioassays with natural leachates of bilberry (Vaccinium myrtillus) and spruce showed negative effects on root elongation of spruce seedlings. Growth bioassays on litter and humus demonstrated inhibitory effects of these organic layers.p-Hydroxyacetophenone, a spruce-specific metabolite, was isolated in spruce throughfall (10−6 M), in water extracts of litter (between 1 and 8 µg/g dry wt) and organic layer (less than 1 µg/g dry wt) in addition to tannins and several common phenolic acids. Potential relationships between vegetation cover and phenolic pattern of the soil are discussed, since organic layers under bilberry heath exhibited higher amounts of phenolic acids and tannins than those under spruce.p-Hydroxyacetophenone and caffeic acid reduced, even at 5 × 10−5 M, spruce seedling growth, especially root development, with additive effects for these two monomers. Autotoxicity involving spruce trees and allelopathy of understory species, mediated byp-hydroxy-acetophenone and other phenolic compounds, including tannins, deserves further attention in regeneration studies.