Perceptual organization of acoustic stimuli by budgerigars (Melopsittacus undulatus): I. Pure tones.

Abstract
A new combination of operant conditioning and psychophysical scaling procedures was used to study auditory perception in a small bird. In a same-different discrimination task, budgerigars learned to discriminate among pure tones that varied along one or more acoustic dimensions. Response latencies were used to generate a matrix of interstimulus similarities. Multidimensional scaling procedures were used to arrange these acoustic stimuli in a multidimensional space that supposedly reflects the bird's perceptual organization. For tones that varied in intensity, duration, and frequency simultaneously, budgerigars were much more sensitive to frequency changes. From a set of tones that varied only in intensity, it was possible to calculate the growth of loudness with intensity for the budgerigar. For tones that varied only in frequency, budgerigars showed evidence of an "acoustic fovea" for frequency change in the spectral region of 2-4 kHz. Budgerigars and humans also differed in their perceptual grouping of tone sequences that rise, fall, or remain constant in pitch. Surprisingly, budgerigars were much less responsive to pitch contour than were humans.