Abstract
Using H. Whitney's algebra of physical quantities and his definition of a similarity transformation, a family of similar systems (R. L. Causey [3] and [4]) is any maximal collection of subsets of a Cartesian product of dimensions for which every pair of subsets is related by a similarity transformation. We show that such families are characterized by dimensionally invariant laws (in Whitney's sense, [10], not Causey's). Dimensional constants play a crucial role in the formulation of such laws. They are represented as a function g, known as a system measure, from the family into a certain Cartesian product of dimensions and having the property gφ = φg for every similarity φ. The dimensions involved in g are related to the family by means of certain stability groups of similarities. A one-to-one system measure is a proportional representing function, which plays an analogous role in Causey's theory, but not conversely. The present results simplify and clarify those of Causey.

This publication has 6 references indexed in Scilit: