Stabilization of uncertain linear systems: an LFT approach

Abstract
This paper develops machinery for control of uncertain linear systems described in terms of linear fractional transformations (LFTs) on transform variables and uncertainty blocks with primary focus on stabilization and controller parameterization. This machinery directly generalizes familiar state-space techniques. The notation of Q-stability is defined as a natural type of robust stability, and output feedback stabilizability is characterized in terms of Q-stabilizability and Q-detectability which in turn are related to full information and full control problems. Computation is in terms of convex linear matrix inequalities (LMIs), the controllers have a separation structure, and the parameterization of all stabilizing controllers is characterized as an LFT on a stable, free parameter.

This publication has 35 references indexed in Scilit: