A Survey on Fuzzy Implication Functions

Abstract
One of the key operations in fuzzy logic and approximate reasoning is the fuzzy implication, which is usually performed by a binary operator, called an implication function or, simply, an implication. Many fuzzy rule based systems do their inference processes through these operators that also take charge of the propagation of uncertainty in fuzzy reasonings. Moreover, they have proved to be useful also in other fields like composition of fuzzy relations, fuzzy relational equations, fuzzy mathematical morphology, and image processing. This paper aims to present an overview on fuzzy implication functions that usually are constructed from t-norms and t-conorms but also from other kinds of aggregation operators. The four most usual ways to define these implications are recalled and their characteristic properties stated, not only in the case of [0,1] but also in the discrete case.

This publication has 50 references indexed in Scilit: