Abstract
The theory of high energy nuclear stars depends on a theory of nuclear transparency and on a theory of nuclear evaporation. The transparency can be computed on the basis of a model proposed by R. Serber as soon as the interactions between the nucleons and the incident particle are known. The evaporation can be computed on the basis of the statistical model of the nucleus as soon as the nuclear entropy and binding energies of the evaporated particles are known. With approximate values for the above interactions, entropies, and binding energies, a probability distribution has been computed for the number of prongs per star. The results are in qualitative agreement with the observations on photographic emulsions described in Part I.