Broad spectrum antiretroviral activity of 2',3'-dideoxynucleosides.

Abstract
Certain dideoxynucleosides have been shown to markedly inhibit the infectivity of human T-lymphotropic virus type III/lymphadenopathy-associated virus, the causative agent of acquired immunodeficiency syndrome (AIDS). Our present studies demonstrate that these drugs are broad spectrum antiretroviral agents capable of inhibiting the infectivity of evolutionarily divergent mammalian type C and animal lentiviruses. Under some conditions, virus infectivity could be inhibited by more than six orders of magnitude. However, the potency of these agents was shown to be greatly influenced by cell-specified determinants. Drug exposure during the initial 24 hr was almost as effective as prolonged treatment on the inhibiton of a single cycle of virus infection and expression. Moreover, virus infection was shown directly to be inhibited at the level of proviral DNA synthesis. Thus the time period during which reverse transcription and provirus integration occur is the critical period required for drug action. Our findings have implications concerning strategies to be considered in attempts to utilize 2'',3''-dideoxynucleosides in control and treatment of retrovirus-induced diseases of animals and humans.