The adaptation of biological membranes to temperature and pressure: Fish from the deep and cold

Abstract
The homoeostatic regulation of bilayer order is a property of functional importance. Arguably, it is best studied in those organisms which experience and must overcome disturbances in bilayer order which may be imposed by variations in temperature of hydrostatic pressure. This article reviews our recent work on the adaptations of order in brain membranes of those fish which acclimate to seasonal changes in temperature or which have evolved in extreme thermal or abyssal habitats. The effects of temperature and pressure upon hydrocarbon order and phase state are reviewed to indicate the magnitude of the disturbances experienced by animals in their environments over the seasonal or evolutionary timescale. Acclimation of fish to altered temperature leads to a partial correction of order, while comparison of fish from extreme cold environments with those from temperate or tropical waters reveals a more complete adaptation. Fish from the deep sea also display adaptations of bilayer order which largely overcome the ordering effects of pressure.

This publication has 62 references indexed in Scilit: