Abstract
In this paper a unified theory for studying renewal processes in two dimensions is developed. Bivariate generating functions and bivariate Laplace transforms are the basic tools used in generalizing the standard theory of univariate renewal processes. An example involving a bivariate exponential distribution is presented. This is used to illustrate the general theory and explicit expressions for the two-dimensional renewal density, the two-dimensional renewal function, the correlation between the marginal univariate renewal counting processes, and other related quantities are derived.

This publication has 1 reference indexed in Scilit: