Varietal tolerance of zinc toxicity in peanuts

Abstract
Peanuts (Arachishypogaea) are more susceptible to zinc (Zn) toxicity than other crops. However, there is potential for rapid evolution of Zn tolerance in many species. The objectives of this study were to test a nutrient solution screening procedure for identifying Zn tolerant cultivars and to identify plant characteristics and cultivars which have potential for Zn tolerance. Florunner was used as the test cultivar to determine the optimum Zn and pH levels for the nutrient solution cultivar screening test. The screening test showed that VA 81B and NC 6 (both virginia‐type peanuts) were more Zn sensitive than Florunner and that N. M. Valencia C and McRan (both valencia‐type peanuts) were more tolerant than Florunner. Field tests were carried out at three locations in Tift County, Georgia: Gibbs Farm (1986–87), Richards Farm (1991), and Stephens Farm (1992). Two out of four field tests did not have adequate soil Zn levels to test Zn tolerance; soil pH between 5.0 and 5.5 and Mehlich 1 soil Zn level ranging from 15–20 mg/kg should be adequate for cultivar screening in the field. Spanish‐type cultivars (Pronto, Spanco, and Starr) had the lowest toxicity ratings and highest yields (Gibbs, 1987), but yields were not economically viable for any cultivars. Aboveground plant Zn or calcium (Ca): Zn ratio were not good indicators of cultivar tolerance. However, low hull Zn concentration, high hull Ca: Zn ratio, and high plant Zn: root Zn ratio correlated well with high yield and low toxicity rating. Minimization of Zn uptake by the hulls would evidently be beneficial in aiding peanut plants in tolerating high soil Zn levels while producing economic yields.