Reversible quantum heat engines

  • 8 January 2002
Abstract
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.