Abstract
The dynamic stiffness of mesotubarium smooth muscle from nonpregnant adult rabbits was measured continuously during isometric contraction by applying small (0.5 percent of the muscle length) sinusoidal length perturbations and measuring the amplitude and phase of the resulting tension perturbations. Stiffness during contraction was directly proportional to muscle tension; during relaxation stiffness at all tensions was significantly increased as compared to the values encountered during the rise of tension. Peak isometric tension and dynamic stiffness (determined at a common tension level) both decreased at shorter muscle lengths; the relative falloff in stiffness was significantly less than the tension decrease. Varying levels of muscle activation (obtained by changing stimulus strength and by applying quick releases to active muscle) had little effect on the measured elastic modulus. Comparisons of these results with published data on single-cell contractile properties imply a cellular locus for a portion of the measured stiffness.