The Behavior of Raw Rubber When Stretched Isothermally

Abstract
The S-shaped form of the stress-strain curve of rubber is today explained in a quite satisfactory way. In the first part of the curve, i. e., the gradual ascent, work must be expended because of the van der Waals forces of attraction of the molecules; in the second part, i. e., the steep ascent, the elasticity is chiefly an entropy effect, which is finally exceeded by crystallization phenomena. The phenomenon of crystallization itself has been the subject of extensive investigations, but in most cases vulcanized rubber has been employed, and because of the various accelerators and fillers which the rubber has contained, the products have been rather ill-defined. It is evident that the phenomena involved in crystallization would be much more clearly defined if the substance under investigation were to be in a higher state of purity. If experiments are carried out with raw rubber, a flow effect is added to the various other phenomena. As a result of this flow effect, Rosbaud and Schmidt, and Hauser and Rosbaud as well, found that the stress-strain curve depends on the rate of elongation at very low extensions, with a greater stiffness at high rates of elongation. As found recently by Kirsch, there is no evidence of any flow phenomena in vulcanized rubber at room temperature. Most investigations have been so carried out that the stress has been measured at a definite elongation. It was therefore of interest to determine the elongation at constant stress, and the changes in this relation with time and with temperature, of various types of raw rubber.