Optomagnetic composite medium with conducting nanoelements

Abstract
A type of metal-dielectric composites has been proposed that is characterized by a resonancelike behavior of the effective permeability μeff in the infrared and visible spectral ranges. This material can be referred to as an optomagnetic medium. It consists of conducting inclusions in the shape of nonclosed contours or pairs of parallel sticks with length of 50–100 nm embedded in a dielectric matrix. The analytical formalism developed is based on solving the scattering problem for considered inclusions with impedance boundary condition, which yields the current and charge distributions within the inclusions. The magnetic properties originated by induced currents are enhanced by localized plasmon modes, which make an inclusion resonate at a much lower frequency than that of the half-wavelength requirement at microwaves. It implies that microstructure can be made on a scale much less than the wavelength and the effective permeability is a valid concept. The presence of the effective magnetic permeability and its resonant properties lead to unusual optical effects and open interesting applications. In particular, the condition for Brewster’s angle becomes different resulting in reflectionless normal incidence from air (vacuum) if the effective permeability and permittivity are the same. The resonant behavior of the effective permeability of the proposed optomagnetic medium could be used for creation of optical polarizes, filters, phase shifters, and selective lenses.
All Related Versions

This publication has 24 references indexed in Scilit: