Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope

Abstract
Two-dimensional photonic crystals of dielectric spheres with a 2.1 μm diameter have been fabricated by arranging individual spheres using a micromanipulation technique in a scanning electron microscope. A buildup of photonic bands from whispering gallery modes has been observed as the number of spheres increased, by measuring the transmission spectra for lattices composed of various numbers of spheres. The photonic band dispersion curves were experimentally obtained for a finite system made of 91 spheres from the transmission spectra for oblique incidence in the near-infrared region. They were in good agreement with the results of a numerical calculation for an infinite lattice. Since this mechanical manipulation technique enables us to control the arrangement of individual optical wavelength-sized scatterers, it provides a new way to systematically investigate various photonic band effects.