Cyclic variations in the oviductal ciliated cells during the menstrual cycle and after estrogen treatment in the pig‐tailed monkey, Macaca nemestrina

Abstract
The epithelium of the oviduct of the pig-tailed monkey, Macaca nemestrina was studied (1) to determine whether quantitative changes in the number of ciliated, deciliated, reciliating and nonciliated cells occur during the menstrual cycle and under certain experimental conditions and (2) to describe the ultrastructure of the ciliated and ciliogenic cells. The mean percentage of ciliated cells decreased from 48.2 in the fimbriae and 48.3 in the ampullae in the postovulatory stage to 7.7 and 18.8, respectively in the late luteal phase; these changes are significant as determined by Duncan's multiple range test. In the early follicular phase 3.9% of the cells in the fimbriae and 11.2% in the ampullae are ciliated, and the number of ciliogenic (deciliated and reciliating) cells is the highest of any time in the cycle in both the fimbrial (6.3%)and ampullar (8.4%)epithelium. In contrast, although the percentage of ciliated cells in the isthmus varies from 44.4 in the preovulatory phase to 34.3 in the early follicular phase, the differences between the various times in the cycle are not significant. However, in the late luteal phase, the values for the fimbriae and ampullae are significantly different from that of the isthmi. Ciliated cells constitute less than 1% of both the fimbrial and ampullar epithelium 2 ¾ years after ovariectomy, but 16.7 in the isthmic tissue. In ovariectomized monkeys treated for 7 or 12 days with estradiol benzoate reciliation occurs, but to a significantly lesser extent in the fimbriae and ampullae than in the pre- or postovulatory animals; the degree of reciliation in the isthmus is not different from the values noted during the cycle. The ultrastructure of ciliated, deciliated and reciliating cells is described. Of much interest is the finding of cytoplasmic protrusions containing variable numbers of ciliary axonemal complexes. It is postulated that such internalization of ciliary micotubules may represent one way in which deciliation may be accomplished.