Stiffness of carbodiimide-crosslinked glycerinated muscle fibres in rigor and relaxing solutions at high salt concentrations
- 1 August 1986
- journal article
- research article
- Published by Springer Nature in Journal of Muscle Research and Cell Motility
- Vol. 7 (4), 339-350
- https://doi.org/10.1007/bf01753655
Abstract
In this article, we have applied a crosslinking technique with a water-soluble carbodiimide to single glycerol-extracted muscle fibres from the rabbit. We have measured the stiffness of the fibres in a relaxing solution at high salt concentration. These fibres were crosslinked to varying extents in the rigor state. The relaxing solution caused uncrosslinked crossbridge heads (S1) to detach. High salt concentrations were used because the fibres were not activated by the crosslinked crossbridges under these conditions, although they were at physiological ionic strength. We found (1) a linear correlation between the extent of S1 crosslinking to thin filaments and the stiffness and (2) that the stiffness in the relaxing solution of muscle fibres with all the S1 heads crosslinked to thin filaments was the same as the rigor stiffness of the fibres before crosslinking. We conclude that the sarcomere compliance is mostly a property of the crossbridges (with more than 65% of the crossbridge compliance in the S1 portions and less than 35% in the S2 portion) and little of other sarcomere structures. In an earlier paper [Kimura & Tawada,Biophys. J. 603–10 (1984)], we demonstrated that the S2 portion of the crossbridge was stiff. It then follows that the crossbridge compliance, and thus the sarcomere compliance, is a property of the S1 heads. Assuming that the S1 portion of the crossbridges in rigor strained muscle fibres is bent, we calculated the Young's modulus of the S1 portion and found that it is about 102 MN m−2. Because this order of magnitude is reasonable in terms of globular protein elasticity, bending is likely to be the nature of the S1 compliance in rigor muscle fibres.This publication has 56 references indexed in Scilit:
- Packing analysis of crystalline myosin subfragment-1Journal of Molecular Biology, 1985
- Electron microscopic visualization of the SH1 thiol of myosin by the use of an avidin-biotin systemJournal of Molecular Biology, 1984
- X-ray scattering by single-headed heavy meromyosinJournal of Molecular Biology, 1984
- Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attachJournal of Molecular Biology, 1984
- Actin-myosin interactions visualized by the quick-freeze, deep-etch replica techniqueJournal of Molecular Biology, 1983
- Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implicationsJournal of Molecular Biology, 1983
- Electron microscopy of thin filaments decorated with a Ca2+-regulated myosinJournal of Molecular Biology, 1980
- Shape and flexibility of the myosin moleculeJournal of Molecular Biology, 1978
- Studies on the role of myosin alkali light chainsJournal of Molecular Biology, 1977
- A new method for producing myosin subfragment-1Biochemical and Biophysical Research Communications, 1972