Ethanol potentiates the stimulatory effects of phorbol ester, sphingosine and 4‐hydroxynonenal on the hydrolysis of phosphatidylethanolamine in NIH 3T3 cells

Abstract
Ethanol and other alcohols have been shown to specifically stimulate phospholipase-D-mediated hydrolysis of phosphatidylethanolamine (PtdEtn) in NIH 3T3 fibroblasts. Here, we further examined the possible mechanism of this ethanol action. Ethanol (10-300 mM) and the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol 13-acetate (TPA) had synergistic stimulatory effects on the degradation of preformed [14C]PtdEtn when added in combination to [14C]ethanolamine-labelled suspended NIH 3T3 cells 30 min after collection of cells by scraping. Scraping caused a transient increase, lasting for less than 30 min, in the cellular content of 1,2-diacylglycerol, another PKC activator. Initially (0-50 min incubation), the main water-soluble product of [14C]PtdEtn degradation in ethanol plus TPA-treated cells was [14C]ethanolamine, while later (90 min) the main product of [14C]PtdEtn hydrolysis was [14C]ethanolamine phosphate in the presence of these agents. Ethanol also potentiated the specific stimulatory effects of sphingosine (through phospholipase D) and 4-hydroxynonenal (not involving phospholipase D) on PtdEtn hydrolysis. The effects of these latter agents were unrelated to PKC activation. These data indicate that the observed potentiating effects of ethanol on PtdEtn hydrolysis do not involve direct regulation of PKC or phospholipase D activities.