Neuroprotective effects of SKF 10,047 in cultured rat cerebellar neurons and in gerbil global brain ischemia.

Abstract
Excitatory amino acids and their receptors are involved in mediating ischemic neuronal damage. The sigma-agonists are believed to interact with the N-methyl-D-aspartate receptor. Therefore, we studied the neuroprotective, hypothermic, and motor deficit effects of the sigma-agonist SKF 10,047 and the N-methyl-D-aspartate antagonist MK-801. Neuroprotective effects were compared using an in vitro ischemia model of cultured rat cerebellar granule cells and the gerbil model of global brain ischemia induced by 5 minutes of bilateral carotid artery occlusion followed by 7 days of reperfusion. In vitro, (+)MK-801 protected against 100 microM glutamate with a 50% protective concentration of 30 nM, followed by (-)MK-801 (150 nM), cyclazocine (0.5 microM), (+)SKF 10,047 (3.3 microM), pentazocine (5 microM), and (-)SKF 10,047 (10 microM). In vivo, (+)SKF 10,047 pretreatment (60 mg/kg) or multiple postischemic treatments provided neuroprotection comparable with MK-801 pretreatment (10 mg/kg). When ischemic animals were administered the multiple dosing regimen of (+)SKF 10,047, no hypothermic effect was noted in the temporalis muscle over 4 hours' postischemia. Motor deficits monitored by a swing grid test showed that 50% recovery from (+)SKF 10,047 was 5.5 times faster than recovery from MK-801. These results are the first to report a hypothermia-free, in vivo neuroprotective effect of (+)SKF 10,047, a prototypical drug of the sigma-agonist class.