Precipitation kinetics of Al3Zr and Al3Sc in aluminum supersaturated solid solutions is studied using cluster dynamics, a mesoscopic modeling technique which describes the various stages of homogeneous precipitation by a single set of rate equations. The only parameters needed are the interface free energy and the diffusion coefficient which are deduced from an atomic model previously developed to study the same alloys. A comparison with kinetic Monte Carlo simulations based on the vacancy diffusion mechanism shows that cluster dynamics correctly predicts the precipitation kinetics provided a size dependent interface free energy is used. It also manages to reproduce reasonably well existing experimental data.