Ultrastructural and Cytochemical Aspects of Silicon-Mediated Rice Blast Resistance

Abstract
Although exogenous application of silicon (Si) confers efficient control of rice blast, the probable hypothesis underlying this phenomenon has been confined to that of a mechanical barrier resulting from Si polymerization in planta. However, in this study, we provide the first cytological evidence that Si-mediated resistance to Magnaporthe grisea in rice correlates with specific leaf cell reaction that interfered with the development of the fungus. Accumulation of an amorphous material that stained densely with toluidine blue and reacted positively to osmium tetroxide was a typical feature of cell reaction to infection by M. grisea in samples from Si+ plants. As a result, the extent of fungal colonization was markedly reduced in samples from Si+ plants. In samples from Si- plants, M. grisea grew actively and colonized all leaf tissues. Cytochemi-cal labeling of chitin revealed no difference in the pattern of chitin localization over fungal cell walls of either Si+ or Si- plants at 96 h after inoc...