THE EFFECT OF CLIMATE ON DRAINAGE DENSITY AND STREAMFLOW

Abstract
Sir Charles Cotton (1964) has pointed out that in an earlier paper (Carlston, 1963) which related drainage density to hydrology, there was insufficient emphasis on the role of climate in its effect on drainage density. Re-examination of the relation of drainage density to base flow in the 15 basins originally described has revealed additional evidence that base flow is affected by precipitation or recharge (a climatic variable), while varying inversely with drainage density. Within the climatic region studied in the earlier paper (the Humid Subtropical Climate of the eastern U. S.), no evidence could be found that amount or intensity of rainfall affected the intensity of flood runoff or the scale of drainage density. In comparison with other climates, however, such as the Marine West Coast Climate, it is possible that the less intense precipitation of a marine climate may result in lower runoff intensities and lower drainage densities, however the lower mean temperatures of such climates may develop soils of generally higher infiltration capacity which would produce lower drainage densities. A progressive increase in aridity results in a decrease in soil and vegetal cover which greatly magnifies the range of drainage densities characteristic of semi-arid regions. In such regions, where the land sur-face has a good infiltration capacity rainfall sinks readily into the dry soil (although recharge to ground water may be negligible), and runoff is virtually zero, as is drainage density, Impermeable terranes devoid of vegetal and soil cover reject the rain, runoff is briefly total and drainage density may be greatly magnified, as in the South Dakota Badlands, where drainage density runs into the hundreds. Arid or Desert Climates should produce erosional landforms with generally high drainage densities, though not reaching the magnitudes of drainage density found in the semi-arid badlands where rainfall intensities are much higher.
Keywords