Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory

Abstract
The problem of robustly stabilizing a linear uncertain system is considered with emphasis on the interplay between the time-domain results on the quadratic stabilization of uncertain systems and the frequency-domain results on H/sup infinity / optimization. A complete solution to a certain quadratic stabilization problem in which uncertainty enters both the state and the input matrices of the system is given. Relations between these robust stabilization problems and H/sup infinity / control theory are explored. It is also shown that in a number of cases, if a robust stabilization problem can be solved via Lyapunov methods, then it can be also be solved via H/sup infinity / control theory-based methods.< >