Abstract
Several techniques in mathematical programming involve the constrained optimization of an extremal-value function. Such functions are defined as the extremal value of a related parameterized optimization problem. This paper reviews and extends the characterization of directional derivatives for three major types of extremal-value functions. The characterization for the completely convex case is then used to construct a robust and convergent feasible direction algorithm. Such an algorithm has applications to the optimization of large-scale nonlinear decomposable systems.