The Influence of Limit Cycle Topology on the Phase Resetting Curve
- 1 May 2002
- journal article
- Published by MIT Press in Neural Computation
- Vol. 14 (5), 1027-1057
- https://doi.org/10.1162/089976602753633376
Abstract
Understanding the phenomenology of phase resetting is an essential step toward developing a formalism for the analysis of circuits composed of bursting neurons that receive multiple, and sometimes overlapping, inputs. If we are to use phase-resetting methods to analyze these circuits, we can either generate phase-resetting curves (PRCs) for all possible inputs and combinations of inputs, or we can develop an understanding of how to construct PRCs for arbitrary perturbations of a given neuron. The latter strategy is the goal of this study. We present a geometrical derivation of phase resetting of neural limit cycle oscillators in response to short current pulses. A geometrical phase is defined as the distance traveled along the limit cycle in the appropriate phase space. The perturbations in current are treated as displacements in the direction corresponding to membrane voltage. We show that for type I oscillators, the direction of a perturbation in current is nearly tangent to the limit cycle; hence, the projection of the displacement in voltage onto the limit cycle is sufficient to give the geometrical phase resetting. In order to obtain the phase resetting in terms of elapsed time or temporal phase, a mapping between geometrical and temporal phase is obtained empirically and used to make the conversion. This mapping is shown to be an invariant of the dynamics. Perturbations in current applied to type II oscillators produce significant normal displacements from the limit cycle, so the difference in angular velocity at displaced points compared to the angular velocity on the limit cycle must be taken into account. Empirical attempts to correct for differences in angular velocity (amplitude versus phase effects in terms of a circular coordinate system) during relaxation back to the limit cycle achieved some success in the construction of phase-resetting curves for type II model oscillators. The ultimate goal of this work is the extension of these techniques to biological circuits comprising type II neural oscillators, which appear frequently in identified central pattern-generating circuits.Keywords
This publication has 23 references indexed in Scilit:
- Control of multistability in ring circuits of oscillatorsBiological Cybernetics, 1999
- Evolution and Analysis of Model CPGs for Walking: I. Dynamical ModulesJournal of Computational Neuroscience, 1999
- Evolution and analysis of model CPGs for walking: II. General principles and individual variability.Journal of Computational Neuroscience, 1999
- A Phase Response Curve Based Model: Effect of Vagal and Sympathetic Stimulation and Interaction on a Pacemaker CellJournal of Theoretical Biology, 1998
- A PRC Based Model of a Pacemaker Cell: Effect of Vagal Activity and Investigation of the Respiratory Sinus ArrhythmiaJournal of Theoretical Biology, 1998
- Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generationBiological Cybernetics, 1997
- Hard-wired central pattern generators for quadrupedal locomotionBiological Cybernetics, 1994
- Coupled nonlinear oscillators and the symmetries of animal gaitsJournal of Nonlinear Science, 1993
- The analysis of observed chaotic data in physical systemsReviews of Modern Physics, 1993
- Control of locomotion in marine mollusc Clione limacina I. Efferent activity during actual and fictitious swimmingExperimental Brain Research, 1985