Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice.
Open Access
- 1 December 1993
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 178 (6), 2157-2163
- https://doi.org/10.1084/jem.178.6.2157
Abstract
Mutations in the gene encoding the phosphotyrosine phosphatase PTP1C, a cytoplasmic protein containing a COOH-terminal catalytic and two NH2-terminal Src homology 2 (SH2) domains, have been identified in motheaten (me) and viable motheaten (mev) mice and are associated with severe hemopoietic dysregulation. The me mutation is predicted to result in termination of the PTP1C polypeptide within the first SH2 domain, whereas the mev mutation creates an insertion or deletion in the phosphatase domain. No PTP1C RNA or protein could be detected in the hemopoietic tissues of me mice, nor could PTP1C phosphotyrosine phosphatase activity be isolated from cells homozygous for the me mutation. In contrast, mice homozygous for the less severe mev mutation expressed levels of full-length PTP1C protein comparable to those detected in wild type mice and the SH2 domains of mev PTP1C bound normally to phosphotyrosine-containing ligands in vitro. Nevertheless, the mev mutation induced a marked reduction in PTP1C activity. These observations provide strong evidence that the motheaten phenotypic results from loss-of-function mutations in the PTP1C gene and imply a critical role for PTP1C in the regulation of hemopoietic differentiation and immune function.Keywords
This publication has 25 references indexed in Scilit:
- Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) geneCell, 1993
- Phorbol ester stimulates the activity of a protein tyrosine phosphatase containing SH2 domains (PTP1C) in HL-60 leukemia cells by increasing gene expressionJournal of Biological Chemistry, 1993
- Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand.Molecular and Cellular Biology, 1993
- Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase geneNature Genetics, 1993
- SH2-Containing Phosphotyrosine Phosphatase as a Target of Protein-Tyrosine KinasesScience, 1993
- Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1.Journal of Biological Chemistry, 1992
- VIABLE MOTHEATEN, A NEW ALLELE AT THE MOTHEATEN LOCUS .1. PATHOLOGY1984
- HEMATOPOIETIC STEM-CELL FUNCTION IN MOTHEATEN MICE1983
- The mouse mutant "motheaten." II. Functional studies of the immune system.1978
- Motheaten, an Immunodeficient Mutant of the Mouse: I. Genetics and pathologyJournal of Heredity, 1975