Filament formation by slime mould myosin isolated at low ionic strength

Abstract
Myosin was isolated and purified from plasmodia of the slime mould Physarum polycephalum by a new method. This method is based on actomyosin extraction at low ionic strength after extensive washing, followed by the selective precipitation of myosin at pH 6·1 under relaxing conditions. The yield of myosin was 3–5 times higher than reported for other methods. In contrast to earlier studies a remarkably strong tendency to filament formation was found for slime mould myosin, probably due to a better preservation of some structural properties during preparation. Conditions were worked out under which numerous filaments up to 4 μm in length can be produced. It was established that not only a gradual decrease of ionic strength may influence filament formation, but also pH, ATP concentration and the presence of divalent cations. Compared to the current filament models a difference exists in the structure of the filaments. No central bare zone can be found, and thus, they lack an apparent bipolarity. Along the entire filament there are lateral projections representing the head portion of myosin molecules. A clear periodicity with an axial repeat of about 14 nm was observed, indicating a highly ordered arrangement of these projections. In this paper it is shown for the first time that myosin from one of the primitive motile systems is able to form aggregates of high structural order, indicating that the contraction of non-muscular actomyosin systems is not necessarily effected with oligomeric or randomly aggregated myosin. The possible role of myosin aggregation in vivo and the similarity of filament structure to that recently reported for myosin from vertebrate smooth muscle and striated muscle are discussed.