Abstract
An antisymmetrically laminated angle-ply plate is optimized with the objectives of minimizing the maximum dynamic deflection, maximizing the natural frequencies and/or maximizing the buckling load. The design variables are the fiber orientation and the thickness of individual layers and are computed by using the methods of nonlinear programming. The concept of Pareto optimality is used in formulating the design problem and in reducing the multiple objectives into a single performance index. Numerical results are presented in the form of optimal tradeoff curves which allow the designer to assess the various possibilities open to him before deciding on a certain design. In this sense, the present design is an interactive process.