Mode of Interaction of Polyoxyethyleneglycol Detergents with Membrane Proteins

Abstract
Binding of dodecyloctaethyleneglycol monoether (C12E3) and purified Triton X-100 to various integral membrane proteins was studied by chromatographic procedures. Binding capacity decreased in the following order: bovine rhodopsin greater than photochemical reaction center greater than sarcoplasmic reticulum Ca2+-ATPase. The detergents were bound in different amounts to the proteins and less than corresponding to the aggregation number of the pure micelles. Appreciable binding of C12E8 to Ca2+-ATPase was observed far below the critical micelle concentration, consistent with interaction of the membrane protein with non-micellar detergent. Model calculations indicate that the detergents cannot combine with the membrane proteins, forming an oblate ring similar to that of pure detergent micelles, such as has been previously proposed for e.g. cytochrome b5 [Robinson and Tanford (1975) Biochemistry, 14, 365-378]. Other arrangements (prolate and monolayer rings), in which all detergent molecules are in contact with the protein, are considered as alternatives for covering the hydrophobic surface of the membrane protein with a continuous layer of detergent.