Top Cited Papers
Open Access
Abstract
The assembly of the primordial follicles early in ovarian development and the subsequent development and transition of the primordial follicle to the primary follicle are critical processes in ovarian biology. These processes directly affect the number of oocytes available to a female throughout her reproductive life. Once the pool of primordial follicles is depleted a series of physiological changes known as menopause occur. The inappropriate coordination of these processes contributes to ovarian pathologies such as premature ovarian failure (POF) and infertility. Primordial follicle assembly and development are coordinated by locally produced paracrine and autocrine growth factors. Endocrine factors such as progesterone have also been identified that influence follicular assembly. Locally produced factors that promote the primordial to primary follicle transition include growth factors such as kit ligand (KL), leukaemia inhibitory factor (LIF), bone morphogenic proteins (BMP’s), keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF). Factors mediating both precursor theca–granulosa cell interactions and granulosa–oocyte interactions have been identified. A factor produced by preantral and antral follicles, Müllerian inhibitory substance, can act to inhibit the primordial to primary follicle transition. Observations suggest that a complex network of cell–cell interactions is required to control the primordial to primary follicle transition. Elucidation of the molecular and cellular control of primordial follicle assembly and the primordial to primary follicle transition provides therapeutic targets to regulate ovarian function and treat ovarian disease.