A Refined Theory for Laminated Anisotropic, Cylindrical Shells

Abstract
A set of governing equations and boundary conditions are derived which describe the static deformation of a laminated anisotropic cylindrical shell. The theory includes both transverse shear deformation and transverse normal strain, as well as expansional strains. The validity of the theory is assessed by comparing solutions obtained from the shell theory to results obtained from exact theory of elasticity. Reasonably good agreement is observed and both shear deformation and transverse normal strain are shown to be of importance for shells having a relatively small radius-to-thickness ratio.