Monte Carlo study of living polymers with the bond-fluctuation method

Abstract
The highly efficient bond-fluctuation method for Monte Carlo simulations of both static and dynamic properties of polymers is applied to a system of living polymers. Parallel to stochastic movements of monomers, which result in Rouse dynamics of the macromolecules, the polymer chains break, or associate at chain ends with other chains and single monomers, in the process of equilibrium polymerization. We study the changes in equilibrium properties, such as molecular-weight distribution, average chain length, and radius of gyration, and specific heat with varying density and temperature of the system. The results of our numeric experiments indicate a very good agreement with the recently suggested description in terms of the mean-field approximation. The coincidence of the specific heat maximum position at kBT=V/4 in both theory and simulation suggests the use of calorimetric measurements for the determination of the scission-recombination energy V in real experiments.