Selection of Keratinocytes Transduced with the Multidrug Resistance Gene in an in Vitro Skin Model Presents a Strategy for Enhancing Gene Expression in Vivo

Abstract
In gene therapy studies, achieving prolonged, high-level gene expression in a significant percentage of cells has been difficult. One solution to enhance expression would be to select for cells expressing both the desired gene and a linked selectable marker gene in a bicistronic vector. As a potential target tissue, the skin is easily accessible for safe topical application of a selecting agent that could lead to significant gene expression in a high percentage of keratinocytes. To test the feasibility of such an approach, a skin raft culture model was developed. Human keratinocytes were transduced with the multidrug resistance (MDR) gene, which confers resistance to a variety of cytostatic and antimitotic compounds, such as colchicine. While growing on acellular dermis, transduced keratinocytes were treated with various doses of colchicine (10-50 ng/ml). Colchicine treatment increased the percentage of keratinocytes expressing MDR to almost 100% in raft cultures, Significantly, keratinocytes in colchicine-treated, MDR-transduced raft cultures were able to proliferate normally and form a stratified, differentiated epidermis. This model suggests that topical selection for MDR-expressing keratinocytes in vivo should be feasible without hampering the biologic integrity of skin. Thus, topical selection leading to enhanced expression of a desired gene, linked to a resistance gene, holds future promise for skin gene therapy.