Post-translational modifications distinguish cell surface from Golgi-retained β1,4 galactosyltransferase molecules. Golgi localization involves active retention

Abstract
β1,4 Galactosyltransferase (GalT) is a membrane-bound enzyme localized predominantly to the trans-Golgi cisternae. Our previous studies have shown that the transmembrane domain of bovine GalT plays a critical role in Golgi localization (Teasdale,R.D., D'Agostaro,G. and Gleeson,P.A., J. Biol. Chem., 267, 4084–4096, 1992). Here we have compared the localization and post-translational modifications of fulllength bovine GalT with a GalT/hybrid molecule where the transmembrane domain of GalT was replaced with that of the transferrin receptor. GalT/hybrid molecules were expressed on the surface of transfected cells; however, differences were observed in the distribution of the hybrid molecules between transfected COS and murine L cells. In transfected COS cells, the GalT/hybrid protein was expressed efficiently at the cell surface, with little Golgilocalized material, whereas in stable murine L cells, which expressed lower levels of the construct, hybrid molecules were detected both at the cell surface and within the Golgi apparatus. Expression of the GalT constructs in either COS or L cells produced two glycoprotein products which differed in molecular mass by 7 kDa. The difference in size between the two products is due to post-translational modiications which are inhibited by brefeldin A and are therefore likely to occur in the trans-Golgi network (TGN). Very little of the high-molecular-weight species was detected for full-length GalT, whereas it was a major product for the GalT/hybrid protein. Only the higher molecular weight species was expressed at the cell surface. Thus, this additional 7 kDa post-translational modification distinguishes molecules retained within the Golgi apparatus (lower Mr species) from those transported through the TGN to the cell surface. These studies indicate that (i) the level of expression influences the intracellular distribution of GalT/hybrid molecules and (ii) the localization of full-length GalT involves active retention within the Golgi stack, and not retrieval from later compartments. After treatment of membrane preparations from stable L cell clones with a heterobifunctional cross-linking agent, full-length bovine GalT molecules were found almost exclusively as high-molecular-weight aggregates, suggesting that GalT exists as an oligomer or aggregate. This ability to oligomerize may be a requirement for Golgi retention.