Abstract
This paper considers the large-amplitude symmetric and asymmetric irrota-tional motion of an inviscid incompressible fluid with a liquid—vapour interface in an accelerating container of revolution. A combined analytical—numerical method which involves no linearizations in the hydrodynamical equations and applies to all but surface-tension dominated motions is used to compute a variety of such motions. One important aspect of this non-linear method is that it accurately determines the initial development of surface instabilities such as breakers near the wall of the container.