Atmospheric silent discharge versus low-pressure plasma treatment of polyethylene, polypropylene, polyisobutylene, and polystyrene

Abstract
Polyethylene, polypropylene, polyisobutylene, and polystyrene films have been exposed to high- and low-pressure non-equilibrium electrical air discharges. The modified surfaces have been characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Atmospheric silent discharge treatment causes a greater level of topographical disruption, whereas surface oxygenation is dependent on the chemical nature of the polymer substrate and its reactivity towards the electrical discharge medium. Oxygen incorporation occurs much more readily for the unsaturated polystyrene surface than for the saturated polyethylene, polypropylene, and polyisobutylene substrates.