Stereochemistry of the concerted enolization catalyzed by .DELTA.5-3-ketosteroid isomerase

Abstract
The reaction catalyzed by delta 5-3-ketosteroid isomerase has been shown to occur via the concerted enolization of the delta 5-3-ketosteroid substrate to form a dienolic intermediate, brought about by Tyr-14, which hydrogen bonds to and protonates the 3-keto group, and Asp-38, which removes and axial (beta) proton from C-4 of the substrate, in the same rate-limiting step [Xue, L., Talalay, P., & Mildvan, A.S. (1990) Biochemistry 29, 7491-7500; Kuliopulos, A., Mildvan, A.S., Shortle, D., & Talalay, P. (1989) Biochemistry 26, 3927-3937]. Since the axial C-4 proton is removed by Asp-38 from above the substrate, a determination of the complete stereochemistry of this rapid, concerted enolization requires information on the direction of approach of Tyr-14 to the enzyme-bound steroid. The double mutant enzyme, Y55F + Y88F, which retains Tyr-14 as the sole Tyr residue, was prepared and showed only a 4.5-fold decrease in kcat (12,000 s-1) and a 3.6-fold decrease in KM (94 microM) for delta 5-androstene-3, 17,dione, in comparison with the wild-type enzyme. Deuteration of the aromatic rings of the 10 Phe residues further facilitated the assignment of the aromatic proton resonances of Tyr-14 in the 600-MHz TOCSY spectrum at 6.66 +/- 0.01 ppm (3,5H) and at 6.82 +/- 0.01 ppm (2,6H). Variation of the pH from 4.9 to 10.9 did not alter these shifts, indicating that the pKa of Tyr-14 exceeds 10.9. Resonances assigned to the three His residues titrated with pKa values very similar to those found with the wild-type enzyme. The binding of 19-nortestosterone, a product analogue and substrate of the reverse isomerase reaction, induced downfield shifts of -0.12 and -0.06 ppm of the 3,5-and 2,6-proton resonances of Tyr-14, respectively, possibly due to deshielding by the 3-keto group of the steroid, but also induced +0.29 to -0.41 ppm changes in the chemical shifts of 8 of the 10 Phe residues and smaller changes in 10 of the 12 ring-shifted methyl resonances, indicating a steroid-induced conformation change in the enzyme. NOESY spectra in H2O revealed strong negative Overhauser effects from the 3,5-proton resonance of Tyr-14 to the overlapping 2 alpha-, 2 beta-, or 6 beta-proton resonances of the bound steroid but no NOE's to the 4- or 6 alpha-protons of the steroid.(ABSTRACT TRUNCATED AT 400 WORDS)