Introduction of Impermeant Molecules into Synaptosomes Using Freeze/Thaw Permeabilization

Abstract
Brief freezing as a means of transiently permeabilitizing synaptosomes was explored. Rat brain synaptosomes frozen and thawed in the presence of 5% dimethyl sulfoxide, a cryoprotectant, were shown to release, in a calcium-dependent manner, previously accumulated [3H]norepinephrine and [14C]acetylcholine in response to elevated [K+]o. In addition, synaptosomes subjected to freeze/thaw were shown to retain their ability to exhibit resting protein phosphorylation, as well as stimulated protein phosphorylation occurring in response to calcium influx. Brief freezing of synaptosomes in the presence of [.gamma.-32P]ATP and either the catalytic subunit of cyclic AMP-dependent protein kinase or calcium/calmodulin-dependent protien kinase II rendered the synaptosomal interior accessible to these agents, as reflected by the phosphorylation of substrate proteins, such as synapsin I, which reside within the nerve terminal. Inclusion of inhibitors of these protein kinases during freeze/thaw blocked synaptosomal protein phosphorylation, indicating that the inhibitors were also introduced. After freezing, the synaptosomes resealed rapidly and spontaneously, as shown by the inability of any of the agents to elicit an effect on phosphorylation when added at the end of the freezing period. The permeabilization procedure should contribute to an understanding of the functional roles of phosphoproteins, and of their associated protein kinases and protein phosphatases, in nerve terminals.