Nature and quantity of fuels consumed in patients with alcoholic cirrhosis.

Abstract
Although alcoholism is a leading cause of morbidity and mortality of middle-aged Americans, there are no data available pertaining to the consequences of Laennec's cirrhosis on total body energy requirements or mechanisms for maintaining fuel homeostasis in this patient population. Therefore, we simultaneously used the techniques of indirect calorimetry and tracer analyses of [14C]palmitate to measure the nature and quantity of fuels oxidized by patients with biopsy-proven alcoholic cirrhosis and compared the results with values obtained from health volunteers. Cirrhotic patients were studied after an overnight fast (10-12 h). Normal volunteers were studied after an overnight fast (12 h) or after a longer period of starvation (36-72 h). Total basal metabolic requirements were similar in overnight fasted cirrhotic patients (1.05 +/- 0.06 kcal/min per 1.73 m2), overnight fasted normal subjects (1.00 +/- 0.05 kcal/min per 1.73 m2), and 36-72-h fasted normal volunteers (1.10 +/- 0.06 kcal/min per 1.73 m2). Indirect calorimetry revealed that in cirrhotic patients the percentages of total calories derived from fat (69 +/- 3%), carbohydrate (13 +/- 2%), and protein (17 +/- 4%) were comparable to those found in 36-72-h fasted subjects, but were clearly different from those of overnight fasted normal individuals who derived 40 +/- 6, 39 +/- 4, and 21 +/- 2% from fat, carbohydrate, and protein, respectively. These data are strikingly similar to data obtained through tracer analyses of [14C]palmitate, which showed that in overnight fasted patients with alcoholic cirrhosis, 63 +/- 4% of their total CO2 production was derived from oxidation of 287 +/- 28 mumol free fatty acids (FFA)/min per 1.73 m2. In contrast, normal overnight fasted humans derived 34 +/- 6% of their total CO2 production from the oxidation of 147 +/- 25 mumol FFA/min per 1.73 m2. On the other hand, values obtained from the normal volunteers fasted 36-72 h were similar to the overnight fasted cirrhotic patients. These results show that after an overnight fast the caloric requirements of patients with alcoholic cirrhosis are normal, but the nature of fuels oxidized are similar to normal humans undergoing 2-3 d of total starvation. Thus, patients with alcoholic cirrhosis develop the catabolic state of starvation more rapidly than do normal humans. This disturbed but compensated pattern for maintaining fuel homeostasis may be partly responsible for the cachexia observed in some patients with alcoholic cirrhosis. This study also showed remarkably good agreement between the results obtained with indirect calorimetry and those obtained with 14C tracer analyses.