Long range control circuits within mitochondria and between nucleus and mitochondria

Abstract
To uncover the functional circuitry both within the mitochondrial genome and between the mitochondrial and the nuclear genome, we have developed a general method for selecting and characterizing genetically suppressor mutations that restore the respiratory capacity of mit- mitochondrial mutants. Several hundreds of pseudo-wild type revertants due to a second unlinked mutation which suppresses a target mit- mutation were isolated. The suppressor mutations were found located either in the nuclear (abbreviated NAM for ‘nuclear accommodation of mitochondria’) or in the mitochondrial genome (abbreviated MIM for ‘mitochondrial-mitochondrial interaction’). The specificity of action of various suppressors upon some 250 different mit- mutations located in several genes was tested. According to this specificity of action, suppressors were subdivided into two major classes: allele specific or gene specific suppressors. Because the cob-box mitochondrial gene has a mosaic organization, we were able to find a novel third class of extragenic suppressors specific for mit- mutations within the introns of this gene. Four examples of suppressors showing various specificities of action illustrate our approach. (1) a nuclear gene controlling specific alleles of different mitochondrial genes; (2) a nuclear gene controlling selectively one intron of a split mitochondrial gene; (3) a mitochondrial gene controlling specific alleles of different mitochondrial genes; (4) a region in one complex mitochondrial gene which controls selectively one intron of another split mitochondrial gene. Different mechanisms of suppression are discussed stressing the alleviation of splicing deficiencies of intron mutations.