Tat Peptide Directs Enhanced Clearance and Hepatic Permeability of Magnetic Nanoparticles
- 12 February 2002
- journal article
- research article
- Published by American Chemical Society (ACS) in Bioconjugate Chemistry
- Vol. 13 (2), 264-268
- https://doi.org/10.1021/bc015563u
Abstract
Superparamagnetic nanoparticles have a number of important biomedical applications, serving as MR contrast agents for imaging specific molecular targets, as reagents for cell labeling and cell tracking, and for the isolation of specific classes of cells. We have determined the physical and biological properties of MION-47 and amino-CLIO, nanoparticles which serve as precursors for the synthesis of targeted MR contrast agents, and Tat-CLIO, a nanoparticle used as a cell labeling reagent. Blood half-lives for MION-47 and amino-CLIO were 682 ± 34 and 655 ± 37 min, respectively. The attachment of 9.7 tat peptides per crystal to amino-CLIO resulted in a reduction in blood half-life to 47 ± 6 min. MION-47, amino-CLIO, and Tat-CLIO were present in highest concentrations in liver and spleen and lymph nodes, where concentrations for all three nanoparticles ranged from 8.80 to 6.11% of injected dose per gram. Twenty-four hours after the intravenous injection of amino-CLIO, the nanoparticle was concentrated in cells surrounding hepatic blood vessels (endothelial and Kupffer cells), in a fashion similar to that obtained with other nanoparticle preparations. In contrast, Tat-CLIO was present as numerous discrete foci of intense fluorescence throughout the parenchyma. Using the peptide as a component of future nanoparticles, it might be possible to design sensors for the detection of macromolecules present in intracellular compartments.Keywords
This publication has 3 references indexed in Scilit:
- Biodistribution of ultrasmall iron oxide particles in the rat liver.Journal of Magnetic Resonance Imaging, 2001
- Improvement of MRI Probes To Allow Efficient Detection of Gene ExpressionBioconjugate Chemistry, 2000
- Trojan peptides: the penetratin system for intracellular deliveryTrends in Cell Biology, 1998