Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ.
Open Access
- 15 January 1991
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 112 (2), 289-301
- https://doi.org/10.1083/jcb.112.2.289
Abstract
Our previous immunofluorescence studies support the conclusion that the temporal appearance and subcellular distribution of TS28 (a marker of transverse (T) tubules and caveolae in adult skeletal muscle [Jorgensen, A. O., W. Arnold, A. C.-Y. Shen. S. Yuan, M. Gover, and K. P. Campbell, 1990, J. Cell Biol. 110:1173-1185]), correspond very closely to those of T-tubules forming de novo in developing rabbit skeletal muscle (Yuan, S., W. Arnold, and A. O. Jorgensen, 1990, J. Cell Biol. 110:1187-1198). To extend our morphological studies of the biogenesis of T-tubules and triads, the temporal appearance and subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (a marker of the T-tubules and caveolae) was compared to (a) that of TS28; and (b) that of the ryanodine receptor (a marker of the junctional sarcoplasmic reticulum) in rabbit skeletal muscle cells developing in situ (day 19 of gestation to 10 d newborn) by double immunofluorescence labeling. The results presented show that the temporal appearance and relative subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (alpha 1-DHPR) are distinct from those of TS28 at the onset of the biogenesis of T-tubules. Thus, in a particular developing myotube the alpha 1-DHPR appeared before TS28 (secondary myotubes; day 19-24 of gestation). Furthermore, the alpha 1-DHPR was distributed in discrete foci at the outer zone of the cytosol, while TS28 was confined to foci and rod-like structures at the cell periphery. As development proceeded (primary myotubes; day 24 of gestation) approximately 50% of the foci were positively labeled for both TS28 and the alpha 1-DHPR, while approximately 20 and 30% of the foci were uniquely labeled for TS28 and the alpha 1-DHPR, respectively. The foci labeled for both TS28 and the alpha 1-DHPR and the foci uniquely labeled for TS28 were generally confined to the cell periphery, while the foci uniquely labeled for the alpha 1-DHPR were mostly confined to the outer zone of the cytosol. 1-2 d after birth, TS28 was distributed in a chickenwire-like network throughout the cytosol, while the alpha 1-DHPR was confined to cytosolic foci. In contrast, the temporal appearance and subcellular distribution of the alpha 1-DHPR and the ryanodine receptor were very similar, if not identical, throughout all the stages of the de novo biogenesis of T-tubules and triads examined.(ABSTRACT TRUNCATED AT 400 WORDS)Keywords
This publication has 39 references indexed in Scilit:
- Biogenesis of transverse tubules: immunocytochemical localization of a transverse tubular protein (TS28) and a sarcolemmal protein (SL50) in rabbit skeletal muscle developing in situ.The Journal of cell biology, 1990
- Developmental regulation of expression of the α1 and α2 subunits mRNAs of the voltage‐dependent calcium channel in a differentiating myogenic cell lineFEBS Letters, 1989
- Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study.The Journal of cell biology, 1989
- Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulumNature, 1989
- Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscleNature, 1987
- Abnormal transverse tubule system and abnormal amount of receptors for Ca2+ channel inhibitors of the dihydropyridine family in skeletal muscle from mice with embryonic muscular dysgenesisDevelopmental Biology, 1985
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence.The Journal of cell biology, 1979
- COORDINATED DEVELOPMENT OF THE SARCOPLASMIC RETICULUM AND T SYSTEM DURING POSTNATAL DIFFERENTIATION OF RAT SKELETAL MUSCLEThe Journal of cell biology, 1969
- Lethal Genes and Analysis of DifferentiationScience, 1963