Optical Limiting In Solutions Of Metallo-Phthalocyanines And Naphthalocyanines

Abstract
Optical limiting measurements have been made on solutions of several metal containing phthalocyanines and naphthalocyanines. Measurements at 532nm using nanosecond pulses from a Q-switched Nd:YAG laser show limiting throughputs of 1-10 millijoules with mild focussing in alcohol solutions with nominal transmissions of 30-70%. Measurements on chloro-aluminum-phthalocyanine solutions utilizing individual 30 psec pulses or trains (spanning about 100nsec) of modelocked pulses have shown even lower limiting throughputs. Thus, the dynamic range of the limiting behavior has been shown to cover at least three orders of magnitude. Prompt limiting is attributed to strong singlet-singlet (S1-Sn) absorption, whereas the longer time limiting behavior is postulated to result from strong triplet-triplet (T1-Tn) absorption. In addition to these studies, efforts have been underway to identify materials with reduced limiting throughput and improved optical transmission characteristics.