Growth of Streptococcus faecalis under High Hydrostatic Pressure and High Partial Pressures of Inert Gases

Abstract
Growth of Streptococcus faecalis in a complex medium was inhibited by xenon, nitrous oxide, argon, and nitrogen at gas pressures of 41 atm or less. The order of inhibitory potency was: xenon and nitrous oxide > argon > nitrogen. Helium appeared to be impotent. Oxygen also inhibited streptococcal growth and it acted synergistically with narcotic gases. Growth was slowed somewhat by 41 atm hydrostatic pressure in the absence of narcotic gases, but the gas effects were greater than those due to pressure. In relation to the sensitivity of this bacterium to pressure, we found that the volume of cultures increased during growth in a volumeter or dilatometer, and that this dilatation was due mainly to glycolysis. A volume increase of 20.3 ± 3.6 ml/mole of lactic acid produced was measured, and this value was close to one of 24 ml/mole lactic acid given for muscle glycolysis, and interestingly, close to the theoretic volume increase of activation calculated from the depression of growth rate by pressure.