Wettability of Graphene
Top Cited Papers
- 4 March 2013
- journal article
- letter
- Published by American Chemical Society (ACS) in Nano Letters
- Vol. 13 (4), 1509-1515
- https://doi.org/10.1021/nl304647t
Abstract
Graphene, an atomically thin two-dimensional material, has received significant attention due to its extraordinary electronic, optical, and mechanical properties. Studies focused on understanding the wettability of graphene for thermo-fluidic and surface-coating applications, however, have been sparse. Meanwhile, wettability results reported in literature via static contact angle measurement experiments have been contradictory and highlight the lack of clear understanding of the underlying physics that dictates wetting behavior. In this work, dynamic contact angle measurements and detailed graphene surface characterizations were performed to demonstrate that the defects present in CVD grown and transferred graphene coatings result in unusually high contact angle hysteresis (16–37°) on these otherwise smooth surfaces. Hence, understanding the effect of the underlying substrate based on static contact angle measurements as reported in literature is insufficient. The advancing contact angle measurements on mono-, bi-, and trilayer graphene sheets on copper, thermally grown silica (SiO2), and glass substrates were observed to be independent of the number of layers of graphene and in good agreement with corresponding molecular dynamics simulations and theoretical calculations. Irrespective of the number of graphene layers, the advancing contact angle values were also in good agreement with the advancing contact angle on highly ordered pyrolytic graphite (HOPG), reaffirming the negligible effect of the underlying substrate. These results suggest that the advancing contact angle is a true representation of a graphene-coated surface while the receding contact angle is significantly influenced by intrinsic defects introduced during the growth and transfer processes. These observations, where the underlying substrates do not affect the wettability of graphene coatings, is shown to be due to the large interlayer spacing resulting from the loose interlamellar coupling between the graphene sheet and the underlying substrate. The fundamental insights on graphene–water interactions reported in this study is an important step towards developing graphene-assisted surface coatings for heat transfer and microfluidics devices.Keywords
This publication has 32 references indexed in Scilit:
- Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithographyNature Chemistry, 2012
- Graphene: Corrosion-Inhibiting CoatingACS Nano, 2012
- Oxidation Resistance of Graphene-Coated Cu and Cu/Ni AlloyACS Nano, 2011
- Monolayer graphene as ultimate chemical passivation layer for arbitrarily shaped metal surfacesCarbon, 2010
- Surface-Energy Engineering of GrapheneLangmuir, 2010
- Wettability and Surface Free Energy of Graphene FilmsLangmuir, 2009
- Graphene: Status and ProspectsScience, 2009
- Structure of water adsorbed on a single graphene sheetPhysical Review B, 2008
- Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the SubstratePhysical Review Letters, 2007
- The rise of grapheneNature Materials, 2007