Water Vapor Feedback and Global Warming
Top Cited Papers
- 1 November 2000
- journal article
- review article
- Published by Annual Reviews in Annual Review of Energy and the Environment
- Vol. 25 (1), 441-475
- https://doi.org/10.1146/annurev.energy.25.1.441
Abstract
Water vapor is the dominant greenhouse gas, the most important gaseous source of infrared opacity in the atmosphere. As the concentrations of other greenhouse gases, particularly carbon dioxide, increase because of human activity, it is centrally important to predict how the water vapor distribution will be affected. To the extent that water vapor concentrations increase in a warmer world, the climatic effects of the other greenhouse gases will be amplified. Models of the Earth's climate indicate that this is an important positive feedback that increases the sensitivity of surface temperatures to carbon dioxide by nearly a factor of two when considered in isolation from other feedbacks, and possibly by as much as a factor of three or more when interactions with other feedbacks are considered. Critics of this consensus have attempted to provide reasons why modeling results are overestimating the strength of this feedback. Our uncertainty concerning climate sensitivity is disturbing. The range most often quoted for the equilibrium global mean surface temperature response to a doubling of CO2 concentrations in the atmosphere is 1.5 degreesC to 4.5 degreesC. If the Earth lies near the upper bound of this sensitivity range, climate changes in the twenty-first century will be profound. The range in sensitivity is primarily due to differing assumptions about how the Earth's cloud distribution is maintained; all the models on which these estimates ate based possess strong water vapor feedback. If this feedback is, in fact, substantially weaker than predicted in current models, sensitivities in the upper half of this range would be much less likely, a conclusion that would clearly have important policy implications. In this review, we describe the background behind the prevailing view on water vapor feedback and some of the arguments raised by its critics, and attempt to explain why these arguments have not modified the consensus within the climate research community.Keywords
This publication has 82 references indexed in Scilit:
- Simulations of tropical upper tropospheric humidityJournal of Geophysical Research: Atmospheres, 2000
- A Sensitivity Study of Radiative–Convective Equilibrium in the Tropicswith a Convection-Resolving ModelJournal of the Atmospheric Sciences, 1999
- Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperatureJournal of Geophysical Research: Atmospheres, 1998
- Evidence for control of Atlantic subtropical humidity by large scale advectionGeophysical Research Letters, 1998
- Comment on “Widespread tropical atmospheric drying from 1979 to 1995” by Schroeder and McGuirkGeophysical Research Letters, 1998
- Widespread tropical atmospheric drying from 1979 to 1995Geophysical Research Letters, 1998
- Water vapor and cloud feedback over the tropical oceans: Can we use ENSO as a surrogate for climate change?Geophysical Research Letters, 1996
- Radiative‐convective model with an explicit hydrologic cycle: 1. Formulation and sensitivity to model parametersJournal of Geophysical Research: Atmospheres, 1994
- Diagnostic study of climate feedback processes in atmospheric general circulation modelsJournal of Geophysical Research: Atmospheres, 1994
- I. The Bakerian Lecture.—On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conductionPhilosophical Transactions of the Royal Society of London, 1861