Abstract
An investigation is made into the evolution, from a sinusoidal initial wave train, of long periodic waves of small but finite amplitude propagating in one direction over water in a uniform channel. The spatially periodic surface displacement is expanded in a Fourier series with time-dependent coefficients. Equations for the Fourier coefficients are derived from three sources, namely the Korteweg–de Vries equation, the regularized long-wave equation proposed by Benjamin, Bona & Mahony (1972) and the relevant nonlinear boundary-value problem for Laplace's equation. Solutions are found by analytical and by numerical methods, and the three models of the system are compared. The surface displacement is found to take the form of an almost linear superposition of wave trains of the same wavelength as the initial wave train.

This publication has 7 references indexed in Scilit: