Purification and characterization of an acetyl‐CoA hydrolase from Saccharomyces cerevisiae

Abstract
Acetyl-CoA hydrolase, which hydrolyzes acetyl-CoA to acetate and CoASH, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 1080-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, gel filtration and hydroxylapatite. The molecular mass of the native yeast acetyl-CoA hydrolase was estimated to be 64 ± 5 kDa by gel-filtration chromatography. SDS/PAGE analysis revealed that the denatured molecular mass was 65 ± 2 kDa and together with that for the native enzyme indicates that yeast acetyl-CoA hydrolase was monomeric. The enzyme had a pH optimum near 8.0 and its pI was approximately 5.8. Several acyl-CoA derivatives of varying chain length were tested as substrates for yeast acetyl-CoA hydrolase. Although acetyl-CoA hydrolase was relatively specific for acetyl-CoA, longer acyl-chain CoAs were also hydrolyzed and were capable of functioning as inhibitors during the hydrolysis of acetyl-CoA. Among a series of divalent cations, Zn2+ was demonstrated to be the most potent inhibitor. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate, a histidine-modifying reagent.